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IV. CONCLUSIONS 

One aim of this study was to match the spectra of 
20Ca42 and 22Ti50; to some extent this has been successful. 
The known levels in these nuclei and the corresponding 
predictions from this work are listed in Table IV. 

Note added in proof. The low excited states of Ti48 

have been experimentally observed by R. A. Ristinen, 
A. A. Bartlett, and J. J. Kraushaar (to be published). 
They find the levels with the following energy, spin, and 
energy ratio (Ei/E2): (a) 0 keV, 0+ 0; (b) 983.3 keV, 
2+ 1; (c) 2295.0 keV, 4+ 2.33; (d) 2430 keV, (1,2+), 
2.48; (e) 3223.9 keV, 4+, 3.28; (f) 3239.9 keV, (5+), 
3.30; (g) 3340 keV, 6+, 3.40; (h) 3620, ?, 3.78. This can 
be compared with the theoretical predictions for D= 1.0, 
X=0.4 where the following spins and energy ratios 
(£//£2) are computed: (a) 0+ 0; (b) 2+ 1; (c) 4+, 2.30; 
(d) 2+ 2.48; (e) 0+ 3.00; (f) 2+ 3.05; (g) 6+ 3.40; 
(h) 4+, 3.58; (i) 1+, 3.76. I wish to thank the authors 
for permission to use their results before publication. 

(It is also of interest that these results fit many of the 
levels in Ca44, Cr52, and Fe54. These are also listed in 
Table IV.) 

As can be seen, the second excited state of spin 0+ in 
Ca42 cannot be matched with any choice of the param
eters. An obvious solution to this problem is suggested 

INTRODUCTION 

INHERE are, in general, six nuclear matrix elements 
which can contribute to a 2~~ to 2+ first forbidden 

beta transition.1 The possibility of experimentally de
termining so many overlap integrals for the same two 
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1 For a recent comprehensive review of first forbidden beta 

decay see H. A. Weidenmiiller, Rev. Mod. Phys. 33, 574 (1961). 

by the work of Thankappan and Pandya6 who have used 
this same model with IJ3/2 and 251/2 orbitals to fit the 
levels in Si30. Their results have two shell-model 0+ 
states (d3/2

2)o and (5i/2
2)o. This gives a low-lying 0+ state 

for a variety of parameters. Similar calculations are 
now underway adding 2pzl2 orbitals to the present calcu
lation. Hopefully these results will give a much better 
fit to all the levels and perhaps also account for the very 
large EQ transition in7 Ca42 from the 1.84-MeV 0+ level 
to the ground state. 
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nuclear configurations makes these transitions particu
larly attractive for studying nuclear structure. Although 
a large amount of both experimental and theoretical 
work has been reported on transitions of this type, no 
one has succeeded in finding a unique solution for the six 
nuclear matrix elements.2 One of the principal reasons 

2 Some recent papers not in reference 1 in which attempts have 
been made to find the nuclear matrix elements for first forbidden 
transitions are: Sbm—P. Alexander and R. M. Steflen, Phys. Rev. 
124, 150 (1961); R. M. Steflen, ibid. 124, 145 (1961). Eu162—H. 
Dulaney, C. H. Braden, and L. D. Wyly, ibid. 125, 1620 (1961). 
Eu164—S. K. Bhattacherjee and S. K. Mitra, ibid. 126,1154 (1962). 
I126, RbM, As74—D. S. Harmer and M. L. Perlman, ibid. 122, 218 
(1961). 
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An electronic computer has been used to investigate the six nuclear matrix elements which enter into the 
2~ to 2+ 1.40-MeV beta transition in the decay of Sb122. Data from beta-gamma angular correlation, beta-
circularly polarized gamma angular correlation, nuclear orientation, and nuclear resonance experiments 
were used in this analysis. As a further aid, the Feenberg-Ahrens relations between certain of the nuclear 
matrix elements were employed to catalog the solutions and to simplify the search problem. In order to 
discover how the remaining ambiguity of these solutions could most easily be reduced, for each of the solu
tions calculations were made of the predicted results of all possible experiments on this beta transition. 
These calculations show how sufficient experimental data can be obtained to determine unambiguously all 
six nuclear matrix elements. In an appendix all the theoretical formulas which give the experimental observ-
ables for a first forbidden 2~ to 2+ beta transition in terms of the nuclear matrix elements are summarized. 
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that the nuclear matrix elements have not been de
termined is the manner in which the observables such as 
the shape of the beta spectrum, the beta-gamma angular 
correlation, and the beta-circularly polarized gamma 
angular correlation depend upon the nuclear matrix 
elements. If the energy of the electron at the end point 
of the spectrum (Wo) is much less than one-half the 
Coulomb energy of the electron at the nuclear radius 
(aZ/2R), then, unless there is some special cancellation 
between the nuclear matrix elements, the observables 
depend mainly on two linear combinations of the 
nuclear matrix elements, and it appears very difficult to 
determine all six of the matrix elements. The approxima
tion (aZ/2K2>Wo) for the observables in which only the 
first term in an expansion in powers of the nuclear radius 
is retained is called the £ approximation.3'4 A consider
able amount of the literature has been devoted to in
vestigations as to whether or not particular 2~ to 2+ first 
forbidden transitions show deviations from the £ ap
proximation.5 The view has been expressed that if the 
beta transition can be adequately described in the £ 
approximation, then it is almost impossible to determine 
all six of the nuclear matrix elements without making 
very precise measurements.1 In view of this general 
difficulty, serious attempts to find various of the nuclear 
matrix elements have resorted to crutches from the 
theories of nuclear structure.6 This is unfortunate as one 
would rather use the beta-decay interaction, which is 
now quite well understood, to unambiguously investi
gate nuclear structure. 

This paper reports an analysis of the first forbidden 
2~ —> 2+, 1.40 MeV beta transition in the decay of Sb122 

which shows that a unique solution for all six nuclear 
matrices can be found even in the case of a beta transi
tion where the spectrum shape and the beta-gamma 
angular correlation show no deviation from the £ ap
proximation. This analysis differs from most previous 
analyses of similar transitions in two ways. In the first 
place it employs data from nuclear orientation experi
ments. The power of the nuclear orientation experiments 
for reducing the ambiguities involved in the analysis has 
not been sufficiently appreciated in the published litera
ture. In the second place this analysis utilizes the 
Ahrens-Feenberg relations7 between certain of the 
nuclear matrix elements to catalog the solutions and to 
simplify the search problem. Not only is the beta-decay 
interaction now known, but there is also good evidence 
that the conserved current hypothesis for the vector 
part of the beta-decay interaction is valid.8-10 It has 

3 T. Kotani and M. Ross, Phys. Rev. 113, 622 (1959). 
4 T . Kotani, Phys. Rev. 114, 795 (1959). 
5 One example is: R. M. Steffen, Phys. Rev. 123, 1787 (1961). 
6 Z. Matumoto, M. Yamada, I.-T. Wang, and M. Morita, Bull. 

Kobayashi Inst. Phys. Res. 5, 210 (1955) and (to be published). 
7 T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952); D. L. 

Pursey, Phil. Mag. 42, 1193 (1951). 
8 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 

(1958). 
9 R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger, 

Phvs. Rev. 127, 583 (1962). 
10 T. Mayer-Kuckuk and F. C. Michel, Phys. Rev. 127, 545 

(1962). 

been pointed out by Fujita11 that if the conserved cur
rent hypothesis is true, then a more precise expression, 
which does not depend upon the details of the nuclear 
force, can be derived for certain of the Ahrens-Feenberg 
ratios. 

In conjunction with the analysis reported in this 
paper, we have also calculated for the various sets of 
nuclear matrix elements the predicted results for all the 
presently known experiments that can be performed on 
this Sb122 beta transition. Results are reported for the 
beta-gamma angular correlation, the beta-circularly 
polarized gamma correlation, the anisotropy of beta 
emission from polarized nuclei, and the longitudinal 
polarization of the beta rays. It is pointed out that either 
a measurement of the beta-circularly polarized gamma 
correlation coefficient as a function of energy or a 
measurement of the anisotropy of beta emission from 
polarized nuclei as a function of energy would make it 
possible to determine more precisely the nuclear matrix 
elements which transform under spatial rotations like a 
vector and to see if the conserved current hypothesis for 
the vector portion of the beta decay interaction gives the 
correct ratio for the nuclear matrix elements. Precise 
measurements of the longitudinal polarization of the 
beta ray would make it possible to determine more pre
cisely the matrix elements which transform under 
spatial rotations like a pseudoscalar and to investigate 
the conserved current hypothesis for the axial vector 
interaction. 

SUMMARY OF RELEVANT DATA 

The decay scheme of 65-h Sb122 which is given by the 
most recent set of Nuclear Data Cards is shown in 
Fig. I.12 For the analysis reported in this paper we are 
interested in the 1.40-MeV beta transition, and we shall 
summarize here only the data relevant to this analysis. 
The shape factor for the spectrum has been measured 
and found to be the same as that for an allowed transi
tion.13,14 An early measurement by Shaknov15 showed 
that the beta-gamma angular correlation coefficient was 
not zero. Recently, Steffen5 has remeasured the beta-
gamma angular correlation as a function of the energy 
of the beta ray. It is convenient to write the beta-gamma 
angular correlation in the form 

N(Wft)=l+eP*(casB). (1) 

The portion of Steflen's results used in this analysis are 
summarized in Table I. 

Deutsch and Lipnik reported a measurement of the 
beta-circularly polarized gamma angular correlation for 
this beta transition.16 When the beta-circularly polarized 

11 J. Fujita, Phys. Rev. 126, 202 (1962). 
12 Nuclear Data Cards (National Research Council, Washington, 

D. C ) , NRC 60-4-85 through 60-4-94. 
« M. J. Glaubman, Phys. Rev. 98, 645 (1955). 
14 B. Farrelly, L. Koerts, N. Bencer, R. van Lieshout, and C. S. 

Wu, Phys. Rev. 99, 1440 (1955). 
» I . Shaknov, Phys. Rev. 82, 333(A) (1951). 
16 J. P. Deutsch and R. Lipnik, J. Phys. Radium 21, 806 (1960). 
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FIG. 1. The nuclear decay scheme for Sb122. 

gamma angular correlation is expressed in the form 

N(Wft)=l+w(Wft)(p/W) case, (2) 

then their result is 

a>=-0.034±0.034. (3) 

For this measurement the average (v/c) for the electrons 
was 0.890zb0.025 and the angle 6 was such that cos0 
=0.960±0.005. 

Bradley, Pipkin, and Simpson17 reported a dynamic 
nuclear orientation experiment for Sb122 in a doped 
silicon crystal. If the angular distribution of the gamma 
r&y (TI) following £2 is written in the form 

A7(0) = 1 - ( 1 0 / 7 ) ^ 2 ^ 2 ( c o s 0 ) ~ (40/3)^4/4^4(005^), (4) 

where f2 and / 4 are the orientation parameters and J52 

and B± are the attenuation factors which depend upon 
the angular momentum carried off by the electron-
neutrino system, then the results of their orientation 
experiment can be summarized by the equation 

B2/Bt= 1.2±0.2. (5) 

They were unable to obtain independent values for 
B2 and BA because they did not know the fraction of 
the radioactive nuclei in the sample which was being 
dynamically oriented. 

Somoilov, Sklyarevskii, and Stepanov18 oriented Sb122 

when it was present as an impurity atom in an iron foil 
by cooling the iron foil to 0.02°K. They found the 

17 G. E. Bradley, F. M. Pipkin, and R. E. Simpson, Phys. Rev. 
123, 1824 (1961). 

18 B. N. Somoilov, V. V. Sklyarevskii, and E. P. Stepanov, 
Soviet Phys.—JETP 11, 261 (1960). 

TABLE I. A summary of part of the results from the beta-gamma 
angular correlation measurements of Steffen. This portion of his 
results was used in the analysis reported in this paper. 

Electron energy 
in mc2 units 

Anisotropy 

1.96 
2.50 
3.00 
3.50 

0.035db0.003 
0.052db0.005 
0.066±0.007 
0.081±0.004 

angular distribution of the gamma rays (principally 71) 
was given by the expression 

(2.2±0.2)X10-5 

X(e) = 1 P2(cos0), 

r 
(6) 

where T is the absolute temperature. They were unable 
to derive a value for B2 because they did not know the 
magnetic field at the antimony nucleus when the 
antimony atom wTas present in the iron lattice. They 
could, however, derive a relationship between the mag
netic field, H, at the antimony nucleus and the B2 

attenuation coefficient. This relationship is 

£ 2 = [ ( 1 . 9 ± 0 . 2 ) X 1 0 V # ] 2 . (7) 

Bradley et at.17 showed from an analysis of the two 
different orientation experiments together with the beta 
gamma-angular correlation measurement of Shaknov 
that the magnetic field at the antimony nucleus in the 
iron sample was either 190 or 340 kG. Acting upon this 
information, Sloan,19 working in this laboratory, used a 
super-regenerative oscillator to search for the nuclear 
resonances of Sb121 and Sb123 when the antimony was 
present as an impurity atom in an iron lattice. He found 
the resonances for both isotopes and showed that the 
field at the nucleus was 

# = 1 9 3 z b 3 k G . (8) 

When this result is inserted into Eq. (7), one obtains for 
JB2 the expression 

J3 2=0.9±0.1. (9) 

For our analysis we have taken the end point of the 
beta spectrum to be W0=3.74mc2 and the partial half-
life for the 1.40-MeV beta transition to be 3.72X 105 sec. 
I t has been assumed that the nuclear radius is given by 
the expression R= 1.20A113 (mc/h)X 10~13 electron Comp-
ton wavelengths. 

SUMMARY OF THE THEORY 

In a notation similar to that employed by Kotani314'20 

the six nuclear matrix elements which can contribute to 

19 E. Sloan, Harvard University thesis, 1962 (unpublished). 
Some uncertainty in interpretation would arise if the field at the 
antimony nuclei in the domain walls (nuclei supposedly seen by 
nuclear resonance) is not the same as that at the antimony nuclei 
in the main part of the sample. 

20 It should be noted here that Ross and Kotani, whose notation 
we are following, used electron wave functions such that fiec has 
the opposite sign from that of Ahrens and Feenberg. 
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(18) 

(19) 

zu=CA I i(ffXr) 

Zy=— C\ 

zx=—Cv 

ta 

(12) 

X = l (13) 

(14) 

(15) 

Here we have introduced the parameters w, i\ u> y, and x 
in such a fashion as to express five of the nuclear matrix 
elements in terms of the unique one, z. Two combina
tions of the nuclear matrix elements which occur fre
quently and which dominate the expressions for the 
various observables are 

Z=CA / Bij, A=^ 

V=v+£w, \=0 (16) 

(17) 

Here £—aZ/2R> R is the nuclear radius in units of the 
electron compton wavelength, a is the fine structure 
constant, and Z is the charge on the daughter nucleus. 

For our analysis we need expressions for the various 
observables such as the angular correlation in terms of 
these nuclear matrix elements. In the Appendix to his 
paper Kotani4 summarizes for first forbidden transitions 
the general formulas for the angular correlation, the 
shape factor of the spectrum, the longitudinal polariza
tion of the beta rays, the beta-circularly polarized 
gamma angular correlation, the longitudinally polar
ized beta-gamma correlation, and the transversely 
polarized beta-gamma correlation. Kotani's formulas are 
advantageous because they are conveniently written for 
writing a computer program. In the Appendix to this 
paper we have summarized the explicit formulas for a 2~ 
to 2+ first forbidden transition and have also given the 
expressions for the B2 and B* coefficients and for the 
angular distribution of the electrons from polarized 
nuclei. Where possible all of the formulas have been 
checked against the corresponding ones of Morita and 
Morita.21 An error in Eq. (A5) of Kotani's paper has 
been corrected. 

From general considerations concerning commutation 
relations, Ahrens and Feenberg7 derived theoretical ex
pressions for the ratios of certain nuclear matrix ele-

According to Ahrens and Feenberg, for electron decay, 

Wi-Wf-2.5tnc2A1/\ 
AA = A y = m 

mc 

-fnuclear potential term. (20) 

Here W i is the total energy of the parent nucleus, Wf 

the total energy of the daughter nucleus, A the atomic 
number of the daughter nucleus, and Z the charge on 
the daughter nucleus. Feenberg and Ahrens estimated 
the value of the nuclear potential term to be —1.4. 

Recently, Fujita11 pointed out that if the conserved 
current hypothesis is valid for the vector part of the 
beta-decay interaction, then the Siegert theorem for 
radiative transitions of nuclei can be generalized to beta 
decay and an expression for Ay which does not depend 
upon the details of the nuclear force can be derived. 
Fujita obtained the expression 

Wi- Wf-2.5fnc2\ 
•](22?/aZ)]. (21) Ay=[2.4+r 

mc 

Fujita pointed out that this expression is the same as 
that of Ahrens and Feenberg when one sets the nuclear 
potential term equal to zero and uses the old value for 
the nuclear radius [ i£= (a/2)Am~\. If the conserved 
current theory and Fujita's conjecture are correct, then 
one of the nuclear matrix elements can be expressed in 
terms of another one and the problem is reduced from 
six to five unknown matrix elements. 

Fujita showed that this relationship was consistent 
with the first forbidden transition in RaE (Bi210).11 

Spector and Blin-Stoyle22 have reported calculations 
which indicate that for RaE 

2 .0<A F <5.3 , (22) 

and they assert that RaE confirms the conserved cur
rent theory. Ullman23 reinvestigated the RaE problem 
using newer data for the electron longitudinal polariza
tion, and he found that a larger value of Av was required 
to fit all the data. On this basis he concluded that it was 
optimistic to say that the data for RaE confirm the 
conserved current theory. This only points out the 
desirability of more unambiguous determinations of the 
nuclear matrix elements. In our analysis we have used 
the Ahrens-Feenberg relations as a guide in determining 
what is the interesting range of variation of the nuclear 
matrix elements. 

[ M. Morita and R. S. Morita, Phys. Rev. 109, 2048 (1958). 

22 R. M. Spector and R. J. Blin-Stoyle, Phys. Letters 1, 118 
(1962). 

23 J. D. Ullman, Phys. Letters 1, 339 (1962). 



2630 P I P K I N , S A N D E R S O N , A N D W E Y H M A N N 

T 
Y 
8.0 

Y 
T 8 . 0 

-f-6.0 

-4.0 

FIG. 2. A contour map of the VY 
and uY planes showing the region of 
good solutions. The various contours 
are the lines of constant x2 for the best 
solution at each point. The labels on 
the contour map give the value of the 
X2. For the calculations summarized in 
these figures, the search increment on 
V and Y was 0.5 and that on u, 0.1. 

MODE OF ANALYSIS AND RESULTS 

An IBM 7090 computer was employed to find the set 
of nuclear matrix elements which best fit the data. For 
fitting the beta-gamma angular correlation, the beta-
circularly polarized gamma angular correlation, the 
B2/B4 ratio, and the B2 value, it is only necessary to 
deal with the parameters wy u, x> V, and F. Once a 
solution for these parameters has been found the value 
of z and hence the value of each of the nuclear matrix 
elements can be calculated from the expression for the 
half-life of the beta transition. Values for the parameters 
Av and AA in the range 1.5<Ar, A^<5 were selected 
and the parameters V, F, and u were taken as inde
pendent variables. The computer was instructed to 
compute the predicted values of the experimentally 
measured quantities for values of V, F, and u in the 
region 

- 2 0 < F < 0 , 
- 1 0 < F < 10, (23) 
- 5 < w < 5 . 

An interval of 0.5 was used for each of the three 
parameters. Calculations were also made with a u 
interval of 0.1 to make sure that no solutions were being 

missed because the search mesh was too coarse. Those 
Vy F, u points which gave B2<0.S were immediately 
rejected. For the other six measurements (4 beta-
gamma angular correlation measurements, 1 beta-
circularly polarized gamma correlation measurement, 
and 1 value for B2/B4) the quantity 

(x 
- ( 

predicted value—measured value ̂  

experimental error j 
(24) 

was calculated. Those points with X*> 10 for any one of 
the six measured quantities were rejected. All of the 
other solutions were recorded together with the values 
for the total x2 

x 2 = L W (25) 

In order to see the structure of the regions of good 
solutions, a plot on the VY plane of the minimum x2 for 
each VY point was made. A similar plot was made on 
the uY plane. Figure 2 shows a VY plane and a uY-
plane plot for the case AA = AV=2.S. These plots are 
typical in that the VY plot shows one region of good 
solutions and the uY plot shows a region of correlated 

TABLE II. A summary of the solutions found for the various AA, AV pairs. The x2 listed is the total x2 for that particular solution. If 
the increment in any one of the independent search parameters, V, Y, or u, required to increase the x2 by a factor of 4 from the minimum 
value is taken as a measure of the error, then for all solutions the errors are less than d=l, ± 1 , and ±0.5 on V, Y, and u, respectively. 
In each case only one minimum for x2 was found. 

AA AV 

1.5 1.5 
1.5 2.5 
1.5 3.0 
1.5 5.0 
2.5 2.5 
3.0 3.0 
5.0 1.5 
5.0 5.0 

Modified B{j 

V 

- 8 . 0 
- 8 . 0 
- 8 . 5 
- 8 . 5 
- 7 . 0 
- 7 . 5 
- 7 . 0 
- 8 . 0 
- 7 . 0 

Y 

-1 .00 
-2 .00 
-1 .00 

0.00 
-2 .50 
-1 .00 
-0 .50 

0.00 
-0 .60 

w 

1.270 
1.270 
1.349 
1.349 
0.370 
0.298 
0.139 
0.159 
0.000 

« 
0.000 

-1.000 
-0.500 

3.50 
-1 .50 
-0 .50 

0.00 
4.00 
0.00 

X 

-0.159 
-0.772 
-0.290 

0.875 
-1.130 
-0.290 
-0.079 

1.00 
0.00 

x2 

1.287 
0.768 
1.227 
0.961 
0.762 
1.086 
1.455 
1.016 
2.17 
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TABLE III. A summary of the nuclear matrix elements found for the various solutions. The errors in the 
matrix elements can be estimated from the information in Table II. 

AA 

1.5 
1.5 
1.5 
1.5 
2.5 
3.0 
5.0 
5.0 

AV 

1.5 
2.5 
3.0 
5.0 
2.5 
3.0 
1.5 
5.0 

Modified Bn 

1 f 
- Ba 
RJ 

±9.90X10~2 

±9.63X10-2 

±9.32X10-2 

±8.58X10-2 

±9.45X10-2 

±9.18X10-2 
±9.68X10-2 

±7.71X10-2 

±9.46X10-2 

1 f - h RJ 
T1.87X10"2 

T8.84X10~2 

=F3.22X10~2 

±8.93X10-2 
=F1.27X10~1 

T3.17X10-2 

=F9.10X10~3 

±9.18X10-2 
0.00 

f 
1 tot 

J 
=F5.37X UT3 

T4.21X10-2 
=F 1.83X10-2 
±8.47X10-2 
=F6.04X10"2 
T1.81X10-2 
^2.62X10-3 

±8.70X10-2 
T1.04X10"3 

1 f 
— / iaXr 
RJ 
0.0 

T9.63X10-2 
=F4.66XlO-2 
±3.00X10~1 

T1.42X10-1 

=F4.59X10~2 
0.0 

±3.08X10^ 
0.0 

f 
J tib 

J 
T3.61X10-2 
T3.51X10-2 
=F3.61XlO-2 
=F3.32X10 2 

=F 1.68X10-2 
T 1.58X10-2 
=F 1.30X10-2 
=Fl.18X10-2 

=F 1.02X10-2 

1 f 
z rr 
RJ 

±1.25X10-! 
±1.22X10-! 
±1.26X10-! 
±1.16X10-! 
±3.50X10-2 

±2.74X10-2 

±1.35X10-2 
±1.23X10-2 

0.0 

solutions. Table I I summarizes the best sets of parame
ters found for the various A^, Av pairs. Also listed in 
Table I I is the solution obtained in the modified B{j 

approximation. For the modified Bi3- approximation it 
is assumed that 

7 ^ 0 , I V 0 , 2 ^ 0 , 

u—w=x=0. (26) 

This is one of the approximations commonly used in the 
literature.1'6 In order to estimate the error in the 
solutions, the increment in each of the V, Y and u 
parameters required to increase the x2 by a factor of 4 
from the minimum value was found for each set of 
solutions. I t was found that in all cases the required 
value lay within the range 

7 ± 1 , f d b l , and iZdLO.5, 

where V, Y, u is the solution with the minimum x2-
Table I I also shows that for all the AA, AV pairs there is 
only one general region of good solutions. 

For each of the solutions in Table I I , calculations 
were made of the values of the six nuclear matrix 
elements. These results are summarized in Table I I I . A 
calculation was also made of the Bij matrix element of 
the unique first forbidden, 1.97-MeV beta transition to 
the ground state of the Te122 daughter. This matrix 
element is 

\R J 7 * 
= (2.45±0.03)X1G- (27) 

Table I I I indicates that the value for the Bij matrix 
element does not depend very sensitively upon the 
values of A A and Ay used. This is quite interesting as the 
ratio 

is quite useful in determining wThich nuclear model best 
describes these beta transitions.6 

In order to discover which experiments could most 
easily further reduce the ambiguity of the solutions, 
the predicted results for all presently possible measure
ments were calculated for each of the solutions in 
Table I I . Calculations were made for the shape factor 

of the beta spectrum, the beta-gamma angular correla
tion, the beta-circularly polarized gamma correlation, 
the longitudinal polarization of the beta rays, the 
longitudinally polarized beta-gamma angular correla
tion, the transversely polarized beta-gamma angular 
correlation, the angular distributions of the electrons 
from polarized nuclei, and the B2 and 234 parameters. 
Table IV summarizes the B2 and J54 parameters and the 
longitudinal polarization of the beta rays at the end 
point of the spectrum for various of the solutions listed 
in Table I I . Figure 3 shows the beta gamma angular 
correlation predicted for these same solutions. The 
numbers beside the various curves are explained in 
Table IV. Figure 4 shows the predicted longitudinal 
polarization of the beta rays for this same set of solu
tions. Figure 5 shows the beta-circularly polarized 

0.035 

0.025 

0.020 Beta-Gamma Angular Correlation 
2 

i + e x 2 ^ - P2(cose) 

I 2 3 wo 4 
Energy of Beta Ray 

FIG. 3. A summary of the beta-gamma angular correlation for 
the various solutions listed in Table IV. The Roman numerals 
serve to identify the various solutions. Also shown on this graph 
are the results from the beta-gamma angular correlation experi
ments of Steffen which were used in determining the solutions. 
The e used in this figure is not the same as the e employed in the 
text. 
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0.95 

0.90 

0.85 

0.80 

Longitudinal Polarization 
of Beta Rays 

2 3 wo 4 
Energy of Beta Ray in mc2 Units 

FIG. 4. The values of the longitudinal polarization of the 
beta rays as a function of energy for each of the solutions listed in 
Table IV. 

gamma angular correlation as a function of energy for 
0=180°; Fig. 6 shows the beta-circularly polarized 
gamma angular correlation as a function of angle for a 
fixed electron energy; Fig. 7 shows the anisotropy of the 
beta rays from polarized nuclei as a function of energy. 
A study of Table IV and Figs. 4 through 7 shows that 
one set of experiments would increase the precision with 
which Av and the X= 1 matrix elements are known and 
another set would determine the \ = 0 matrix elements 
and A A, A measurement of the beta-circularly polarized 
gamma correlation coefficient as a function of the energy 

Beta-Circularly Polarized Gamma 
Angular Correlation for 9 = 180° 

N(e,w) = i + W(w,cose)-5- cose 

FIG. 5. The beta-
circularly polarized 
gamma angular cor
relation as a function 
of electron energy for 
a fixed angle of 180° 
for each of the solu
tions listed in Table 
IV. 

TABLE IV. A summary of the B2 and B4 parameters and the 
longitudinal polarization of the 0 rays at the end points of the beta 
spectrum for some of the solutions listed in Table II. The solution 
number serves to identify the curves in Figs. 3 through 7. 

A^ 

2.5 
1.5 
5.0 
5.0 
1.5 

Av 

2.5 
5.0 
1.5 
5.0 
1.5 

Modified B%i 

Solution 
number 

I 
II 
III 
IV 
V 
VI 

B2 

0.929 
0.906 
0.985 
0.903 
0.978 
0.984 

Bt 

0.800 
0.715 
0.986 
0.700 
0.965 
0.980 

Longi
tudinal 

polarization 
for W = WQ 

-0.929 
-0.939 
-0.960 
-0.961 
-0.924 
-0.964 

of the beta ray or a measurement of the anisotropy of 
beta emission from polarized nuclei as a function of 
energy would determine the X=l matrix elements and 
A v> The simplest experiment which gives a measure of 
the A=0 matrix elements is a precise (1 to 2%) meas
urement of the longitudinal polarization of the beta 
rays. 

The computer program was written in Fortran and 
the entire computation including debugging took ap
proximately 4 h on a 7090. We will furnish copies of our 
computer program to any interested parties. 

CONCLUSIONS 

This analysis indicates that even for a beta transition 
such as Sb122 where the spectrum has an allowed shape 
and the angular correlation shows no deviation from the 
£ approximation, one can still determine all six of the 
nuclear matrix elements. The most useful experiments 
for this purpose are the nuclear orientation experiments, 
the beta-circularly polarized gamma correlation experi-

Beta -Circularly Polarized Gamrr 
Angular Correlation for w = 3.0 
N(e,w)« i+ w(w, cose jocose 

FIG. 6. The beta-circularly polarized gamma angular correlation 
as a function of angle for a fixed electron energy of W = 3.0mc2 for 
each of the solutions listed in Table IV. 
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FIG. 7. The anisot-
ropy of the beta rays 
from polarized nuclei 
as a function of the 
electron energy for 
each of the solutions 
listed in Table IV. 

Beto Anisotropy from 
Polarized Nuclei 

N(e,W) = ] + £°f, -g- cos 

ments, and the measurements of the longitudinal polari
zation of the beta rays. This analysis indicates that the 
use of the Ahrens-Feenberg relations can simplify the 
analysis. I t is important to investigate the validity of 
these relationships and their connection with the con
served current theories of the beta interaction. This 
analysis also indicates that the Bij approximation gives 
a good value for the Bij matrix element and that the 
character of the Sb122 decay is most probably due to a 
cancellation effect rather than a selection rule. I t is 
instructive to note that for a decay such as Sb122 where 
the nuclear orientation experiments show that TO£>F, 
one can obtain a good idea of the behavior as a function 
of energy of the circular polarization correlation and the 
anisotropy from oriented nuclei by retaining those 
terms which depend on V2, VY, xV, and uV. 
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APPENDIX 

In this Appendix we summarize the explicit formulas 
for a 2~ —» 2+ first forbidden beta transition which is fol
lowed by a 2+ —> 0 + electric quadrupole gamma ray. In 
addition to those formulas which appear in the paper of 
Kotani,4 we give here the expressions for the anisotropy 
of electrons and the anisotropy of the gamma rays when 
the nuclei are oriented.24 Whenever possible we have 
checked these formulas against those of Morita and 
Morita.21 The Morita and Morita formulas can be ob
tained from those of Kotani by setting Xi through X8 

equal to one. The primary reason for listing the formulas 

here is to provide in one place a complete list of the 
explicit expressions for this particular decay scheme. 
Since the advent of the IBM 7090 computer it is simpler 
to compute all the various functions such as the Fermi 
function rather than to use the published tables. The 
formulas listed here are in such a form as to make 
programming straightforward. Only one error was found 
in Kotani's formulas. His Eq. (A5) should be replaced 
by our Eq. (A16). 

A. Summary of the notation: 

p momentum of the electron in mc2 units; 
W total energy of the electron in mc2 units 

[W = ( ^ + l ) 1 / 2 ] ; 
TFo total energy of the electron at the end point 

of the beta spectrum; 
R radius of the daughter nucleus in electron 

compton wavelengths; 
Z charge on the daughter nucleus; 
a fine structure constant; 
F (Z,W) Fermi function; 
T(x+iy) gamma function of a complex argument; 
m mass of the electron; 
r circular polarization of gamma ray ( + 1 for 

right, — 1 for left) 

24 General expressions for these quantities are given in 
1, 17, and 21. 

B. List of special functions: 

y=aZW/p, 

F(Z,W) = 2 (I+71) {2pR)2^~l) 

X (expry)-
r (7 i+*y) l 

r ( 2 7 l + i ) | 2 

0 * = a r g ( r ( 7 * + i y ) ) + M 7 * - f t ) , 

^ = i ( 3 + 7 2 - 7 i ) [ ( 2 + 2 7 i ) / ( 2 + 7 2 ) ] 1 / 2 , 

yk=lk2-(aZ)2y\ 

2+72 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

X i = - -(2pR)2^~ •71-D 

2 ( l + 7 i ) 

X ( 1 2 r ( l + 2 7 i ) / r ( l + 2 7 2 ) ) 2 

\T(y2+iy) 
X 

Tfa+iy) 
(A6) 

references 

X2 = /l(Xi)1/2[cos(02-0i) 

+ysm(e2-0l)/(y2+2yl)-], (A7) 

X4=-4(X1)1/2[cos(02-6l1) 

+L(aZy/y(y,+ 2yi)l s i n f o - f t ) ] , (A8) 

X f i =^(X , ) 1 / 2 [ ( l+72+7 i ) / (3+72-7 i ) ] 

Xcos(02-0i) , (A9) 

X 8 = ! C ( 7 2 + 7 i + 3 ) / ( l + 7 i ) ( l + 7 2 + 7 i ) ] X 6 . (A10) 
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C. The beta-decay interaction Hamiltonian density, 5C ;̂ H. The fi-y angular correlation: The angular correla-

r lion between the beta ray and a gamma ray whose 
3£ _ f \Q($ y (C —C y )\I/ r) circular polarization is r can be written in the form 

W p u y A 5 A
 2 

X ( & 7 « ( 1 + 7 B > M + H . C . , (All) N(o)ssl+TA1—P1(cos6)+A2—P2(cos6) 
where IF IF 

Cv==lj + rA^P,(cosd), (A23) 
C ^ = - 1 . 1 9 ± 0 . 0 4 , IF 

G=2.97X10"12 (atomic units). w h e r e 

V A,= (R,k+gkW+hkW2)/C(W), (A24) 
Z). 77ze number of electrons emitted per second as a A /n , , , T m / - /TT ' \ / A T - \ 

/ 4- / 7VT/TIA y l 2 = ( K 3 ^ + ^ I F ) / C ( I T ), (A2.-)) 
function of energy, h\W): 

2 ^ 2 ^3= /* /C(H0 , (A26) 

A7(JF)JJF= f jf — 1 and the various auxiliary functions are 
\ ft I \2TTZJ 

* 4 * = - ( i ) 1 / 2 [ 2 f 0 r i + f a ^ ] 
X^F(Z^V)C(W)pW(W0--WydW, (A12) +(*)[f1»-(WV6)«(2A-+«)«-(i i /2)«] 

where C(JF) is the shape factor for the beta spectrum +( l /36) ( | ) 1 / 2 [ (2x+w)IF 0
2 - | (4a :+3w)] 

(see F below). + (1/240) (5TFo
2-3X0, (A27) 

R. The half-life of the beta transition, n , 2 ; £* = f (*)1/2(2*+tt)$V- (1/18) 
XL(5u-2x)Y-3Wou(x-±u)^ 

±=(A-\(—)(—)z2 -Ui)ll2LUY+Wo(x+2u)2-WQ/24, (A28) 

TI/2 \ l n 2 / \ ft / W v & * = - | « C T - W ) + ( X / 1 4 / 3 0 ) ( . T + 2 M ) 

riro + ( V 4 8 ) (1+fXi), (A29) 
X / F(Z,W)C(W)pW(W0-1V)2dW. (A13) Rzk=\2[- (l/21)1/2r0 

A + i ( 2 ^ - « ) f i + l ( l / 1 4 ) 1 / 2 r , ] , (A30) 

F. The shape factor for the beta spectrum, C(W): ek=-(l/72)(2x+7n)(2x-u) 
- ( 1 / 1 2 ) ( 1 / 1 4 ) 1 ' ' 2 ( 5 ^ - 2 A - ) - ( 1 / 1 1 2 ) X 1 J (A31) 

C0V) = k+kaW+WW)+W, (AU) / , = _ K 2 / 7 ) 1 / 2 ( 1 , _ M ) _ ( 2 / 3 5 ) X i . ( A 3 2 ) 

where 

k = ro2+ (T)*] 

I t is convenient to speak of the angular correlation 
. I ,. o , ° /o , \o coefficient, e, where 

+\u+-(2*+uy e=(f/w)i2j (A33) 
I -i / | f / 2 _ \ v and the /3~ circularly polarized gamma coefficient, w, 

(2r>+7«2) + ( ), (A15) where 
1 8 J \ 12 / / 1 yi1Pi(cosd)+p2AzP,(cosd) 

ti=Y+(u-x)Wb/3, (A16) W \Cos0/ l+eP2(cos0) 

f o= F+w(IF 0 /3 ) , (A17) j The longitudinally polarized p-y correlation, PLV 

ak= -iuY- (TFo/9)C(4x2+5^2)+f ] , (A18) p 

6ft = f [ - w r o + ( « + » ) f i ] , (A19) FL7=~W 

ck = U^+W)+ (1+X0/12. (A20) ( i + [ _ (bk/W)+dk2+l(R,k/W)+nk2P2(cosd) ] 
X • 

G. The longitudinal polarization of Ike electrons, PL: I C(W)£l+eP<>(cos8)] i 
(A35) 

WL \ C{W) J. 
(A21) W h e r e 

/?6£= (XJVt-Xip^Rzk, (A36) 

where b is given by (A19) and »/*= J(t/2l)>«ic.+ ( l / 1 8 ) ( 2 * - « ) ( * - « ) 

dk=(2/9)Z-v?+&-**)]. (A22) +1
6(\/Uy-(x-u). (A37) 
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/ . The transversely polarized (3-y correlation, PT: The f20=4(f2i+JJ/T22)/C(Wr), (A51) 
transverse 8 polarization in or perpendicular to the , , . . x , 7 W2 -. /,»-•,% 
plane of the 0 and 7 rays is expressed as follows: f2i~X,|_(l/21) -ro-el-'-v—M)fi+2U/ H; -fij, (AWj 

3 * r RJi+nkW -1 rM=(l/72)(2*+7«)(2*-«) 

P r i I = — -sinflcosfl , (A38) -A(l/14)1/s(S«-2*)+(X1/112), (A53) 

f3 n=t( 2 / ' ) ' • ( 2 ^ - M ) — 2XI/21. (As4) 

Pri= (aZ)(-)(—I sin0 cos0 L. The angular distribution of the electric quadrupole 
\%/\W/ gamma rays following the beta ray when the nuclei are 

r R%k-\-nkW ~i oriented: 
X , (A39) 

LC(»O[ l+^2(cos0) ]J A^(0) = l-(1O/7)52/2P2(cos0) 

tf6=(X6/X2)#3, (A40) -(4O/3)B4/4P4(cos0), (A55) 
where 

i?s= (X8/X2)i?3. (A41) 
. . . l r 31 72-

K. The angular distribution of the electrons from fA= 
oriented nuclei: 161 

E ( f » » ) 4 ^ - — E(wi)2flmi+— L (A56) 
.mi 7 w»» 35 J 

p f 5,= 0So+/3i/2-Wl4)/C8o+|81+ft), (A57) 

W-l^WM+^M ^ ^ W 3 + W T V t f r f ft+A), (A58) 

^3 r"» 

+—f»" PftP^casB), (A42) ft= f ' ( a o o + ^ W ^ I W o - W O W , (AS9) 

where the orientation parameters are aoo== Cf o2+ («'/3)2], (A60) 

/i = i £-£»*«-» (A43) a 0 8 = - M o , (A61) 

/ « = l E » , ( « 0 , o - - 2 ] 1 (A44) ^ /-,r» 

/3=i[Zmi(wt)3o».i—(17/5)Xmi Wjam,.]. (A45) 

/•"V ai2 \ 

0i = I Uio+a11TF+—+alsT^J 

The am. are the relative populations of the nuclear XF(Z,W)pW(W0—WydW, (A62) 
sublevels normalized so that 

(W'o)2 

Z - i O - ^ 1 (A46) a10=fi2+ (2X+M) 2 -1 /18(2X 2 +7M 2 ) , (A63) 
18 

The other parameters are 
tf= 2(f „ + r » H ' + f uW*)/C(JV), (A47) « U = - | ^ ' - i ^ o ( 4 , 2 + 5 M

2 ) , (A64) 

rn—t t ro ra rH-M «12=§(«+*)ri, (A65) 
-iCri2-(^o/6)2(2.v+«)2- («/2)*]+(l/36) a,»= J(4^+5«»), (A66) 
X (f)"2[(2*+M)wy-f(4:r+3«)] 

-(l/240)(5ir„2-3X1), (A48) 02= / (aoo+^iIF+^W72) 

fi2=(f)(l)1/2(2x+M)f0 ' XF(Z,H0^n>W-W0W»r, (A67) 
+ (1/18)[(5«-2*) F-3ira« (*-$«)] 

-a)(l)1/2CX4F+|W/o(.r+2«)]+HV24, (A49) «*>= (W-XO/12, (A68) 

fu=J«(.v-«)+(V'14/30)(a;+2«) 0121=-§JFo, (A69) 

-(l/48)(l + f\1), (A50) a„=(l+X,)/12. (A70) 


